Small-Angle Neutron Scattering Study of N-Dodecyl-N,N-dimethylamine N-Oxide Induced Solubilization of Dioleoylphosphatidylcholine Bilayers in Liposomes

D. UHRÍKOVÁ¹, N. KUČERKA², A. ISLAMOV³, V. GORDELIY³ AND P. BALGAVÝ¹

- 1 Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- 2 Department of Chemical Theory of Drugs, Faculty of Pharmacy Comenius University, Odbojdrov 10, 832 32 Bratislava, Slovakia
- 3 Condensed Matter Division, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia

Abstract. Mixtures of *N*-dodecyl-*N*,*N*-dimethylamine *N*-oxide (DDAO) and 1,2-dioleoylphosphatidyl choline (DOPC) in chloroform/methanol were evaporated, dried and hydrated in excess ²H2O. Aqueous dispersions thus prepared were extruded through polycarbonate filter with pores of diameter 500Å. These samples were studied using small-angle neutron scattering. DDAO destabilizes the bilayer in unilamellar liposomes and solubilizes it into mixed micelles whose shape changes with the DDAO: DOPC molar ratio. Bilayers or/and bilayer fragments have been observed up to DDAO: DOPC = 1.5, rod-like particles (tubular, cylindric micelles) at 2.5 < DDAO: DOPC < 3.5, and transition to globular particles (spheroid micelles) at DDAO: DOPC > 4. In bilayers or/and bilayer fragments, DDAO modulates the thickness of the bilayer.

Key words: *N*-Dodecyl-*N*,*N*-dimethylamine *N*-oxide — 1,2-Dioleoylphosphatidylcholine — Unilamellar liposome — Bilayer solubilization — Small-angle neutron scattering

Intro duct ion

Non-ionic surfactants *N*-alkyl-*N*,*N*-dimethylamine *N*-oxides were found to possess antimicrobial (Devínsky et al. 1990), antiphotosynthetic (Šeršeň et al. 1992) and immunomodulatory (Bukovský et al. 1996; Ferenčík et al. 1990; Jahnová et al. 1993; Kačáni et al. 1996) activities. These compounds modulate also the activity of transmembrane enzyme (Ca-Mg)ATPase from sarcoplasmic reticulum (Andriamainty et

Correspondence to: Dr. Pavol Balgavý, Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia E-mail: pavol.balgavy@fpharm.uniba.sk

184 Uhríková et al.

al. 1997; Karlovská et al. 1999b). The well known homologue with dodecyl substituent (DDAO) is widely used as a mild biological detergent in membrane studies for solubilization, purification, reconstitution and crystallization of membrane proteins.

These surfactants penetrate into phospholipid bilayer and affect its fluidity (Balgavý et al. 1989; Šeršeň et al. 1989; Glover et al. 1999), thickness (Dubničková et al. 1997; Karlovská et al. 1999a) and phase transitions (Gallová 1999). In the phosphatidylcholine fluid lamellar phase, they induce formation of non-lamellar phases at high concentrations (Uhríková and Stanovská 1990). Before solubilization, DDAO induces fusion of small unilamellar liposomes to larger vesicles (Kragh-Hansen et al. 1998).

In the present communication, we report the results of the small-angle neutron scattering (SANS) study of the DDAO mixtures with dioleoylphosphatidylcholine (DOPC) extruded through polycarbonate filter.

Materials and Methods

DOPC was purchased from Avanti Polar Lipids (Alabaster, USA), DDAO was from Fluka (Buchs, Switzerland) and heavy water (99.98% $^2\text{H}_2\text{O}$) was obtained from Izotop (Moscow, Russia). The other chemicals were obtained from Mikrochem (Bratislava, Slovakia). Organic solvents were redistilled before use.

Weighted amounts of DOPC and DDAO were dissolved in chloroform/methanol and mixed in solution. Solvent was evaporated to dryness under a stream of pure gaseous nitrogen, followed by evacuation in a vacuum chamber at 10 Pa for 18 hours, then transferred to a glass tube and evacuated again in the chamber. ²H₂O was added, the tube was purged with pure gaseous nitrogen and sealed with Parafilm M (American National Can, Greenwich, USA). DOPC + DDAO in ²H₂O was dispersed by hand shaking and briefly sonication in a bath sonicator (Vrable, Slovakia). This dispersion was extruded through polycarbonate filter (Nucleopore, Plesanton, USA) with pores of diameter 500 Å, using the LiposoFast Basic extruder (Avestin, Ottawa, Canada) fitted with two gas-tight Hamilton syringes (Hamilton, Reno, USA). The samples were subjected to 25 passes through the filter at room temperature. The extruded samples were flushed with the pure gaseous nitrogen and sealed. The maximum concentration of DOPC in the final preparation was 10 g/l, the maximum period between the sample preparation and its measurement was 3-4 hours. The extrusion procedure as described above produces large unilamellar liposomes when using pure phospholipids without admixtures (MacDonald et al. 1991; Dubničková et al. 1997; Balgavý et al. 1998; Uhríková et al. 2000; Balgavý et al. 2001a).

The SANS measurements were performed at the small-angle time-of-flight axially symmetric neutron scattering spectrometer YuMO at the IBR-2 fast pulsed reactor (Ostanevich 1988; Vagov et al. 1983). The samples were poured into quartz cells (Hellma, Miillheim, Germany) to provide the 2 mm sample thickness. The sample temperature was set and controlled electronically at 20.0 \pm 0.1 $^{\circ}\text{C}$. The

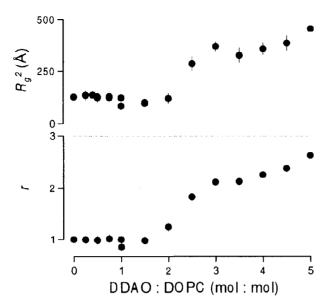
sample in quartz cell was equilibrated for 1 hour at the given temperature before measurement. The scattering patterns were corrected for background effects. The coherent scattering cross section was obtained by using a vanadium standard scatterer.

Results and Discussion

The neutron scattering function can be written as

$$I(Q) = NP(Q)S(Q) \tag{1}$$

where N is the number of scattering particles in unit volume, P(Q) is the particle structure factor, S(Q) is the size- and orientation-dependent interparticle structure factor. Q is the scattering vector defined as


$$Q = 4\pi \sin\theta/\lambda \tag{2}$$

where 2θ is the scattering angle and A the wavelength of neutrons. S(Q) approximately equals to 1 for dilute and weakly interacting particles. It has been found experimentally that for the unilamellar liposomes at the phospholipid concentration (1 wt.%) as used in our experiments, $S(Q) \cong 1$ is a good approximation and that deviations occur at concentrations > 20 g/l (see Dubničková et al. (1997), Balgavý et al. (1998) and Balgavý et al. (2001a) for references). According to Guinier approximation for very small scattering angles, one can rewrite then eqn. (1) as

$$I(Q) = AQ^{r-3}exp(-Q^{2}R_{g}^{2}/r)$$
(3)

where A is a constant, R_g is the object radius of gyration and $r\approx 1, 2$, and 3 hold for infinite sheet-like object, for rod-like object of infinite length and uniform cross section, and for a globular object, respectively (Hjelm et al. 1990; Dubničková et al. 1997); $r\approx 1$ is a good approximation also for polydisperse hollow spheres having a constant shell thickness (Balgavý et al. 1998). The equation 3 can be thus used for the evaluation of experimental SANS data to obtain an information on the geometry of scattering particles. We have fitted our SANS data in the interval of $0.006~\text{Å}^{-2} \geq Q^2 \geq 0.001~\text{Å}^{-2}$ by the least squares method to obtain r and R_g values. The results of fitting are shown in Fig. 1. It is seen that the value of r remains constant and equal to 1 up to about DDAO: DOPC = 1.5 mol/mol. The value $r\approx 1$ indicates the presence of unilamellar liposomes, eventually discoid micelles - isolated fragments of bilayers having large lateral dimensions. The region 1.5 < DDAO: DOPC < 2.5 is characteristic by the increase in the r value. For 2.5 < DDAO: DOPC < 3.5 the observed value of $r\approx 2$ indicates the presence of rod-like particles, e.g. tubular micelles. For DDAO: DOPC > 4 one can observe

186 Uhríková et al.

Figure 1. Dependence of the gyration radius R_g and of the shape parameter r on the DDAO: DOPC molar ratio.

transition of the rod-like particles into globular particles. These could be spheroid micelles. The values of R_{σ} show the same tendency as r.

The thickness parameter of the bilayer (a shell in polydisperse hollow sphere - unilamellar liposome) and the thickness parameter of the planar sheet (discoid micelles) can be obtained from the gyration radius as

$$d_g = 12^{0.5} R_g (4)$$

The thickness parameter d_g is equal to the steric bilayer thickness in unilamellar diacylphosphatidylcholine liposomes when supposing that there are no water molecules located in the bilayer polar region (Balgavý et al. 2001b). We have also shown in our recent paper (Balgavý et al. 2001a) that the thickness parameter d_g is a linear function of the transbilayer phosphate-phosphate distance in unilamellar diacylphosphatidylcholine liposomes. The parameter d_g is thus a good measure of the bilayer thickness in unilamellar liposomes and can be used to study its relative changes. The results of calculation of the bilayer thickness parameter are shown in Fig. 2. After a small increase at small DDAO concentration, the bilayer thickness decreases below that in the control sample without DDAO. The largest decrease is observed close to the transition region from bilayers in liposomes or in discoid micelles into tubular (cylindric) micelles.

The changes in the DOPC bilayer thickness in the presence of DDAO and the transition of the DOPC bilayer into mixed micelles closely correlate with the

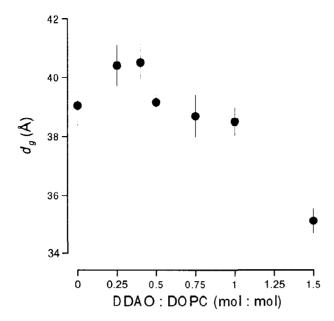


Figure 2. Dependence of the bilayer thickness parameter $\boldsymbol{d_g}$ on the DDAO : DOPC molar ratio.

changes in activity of the sarcoplasmic reticulum Ca²⁺-transporting ATPase reconstituted into DOPC unilamellar liposomes (Karlovská, Devínsky, Lacko, Hammel and Balgavý, to be published).

In conclusion, we have observed that DDAO destabilizes the bilayer in unilamellar liposomes and solubilizes it into mixed micelles whose shape changes with the DDAO: DOPC molar ratio.

Acknowledgements. D. Uhríková and N. Kučerka thank the staff of the Condensed Matter Division, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research in Dubna, for the hospitality. This study was supported by the Slovak Ministry of Education grants to P. Balgavý. The experiments in Dubna were supported within the JINR project 07-4-1031-99/03.

References

Andriamainty F., Filípek J., Devínsky F., Balgavý P. (1997): Effect of N,N-dimethylalkylamine N-oxides on the activity of purified sarcoplasmic reticulum (Ca-Mg) ATPase. Pharmazie 52, 240—242

Balgavý P., Šeršeň F., Leitmanová A., Devínsky F., Mlynarčík D. (1989): The effect of N-(1-methyldodecyl)-N,N-dimethylaminoxide on the conformation of hydrocarbon chains in phospholipid bilayers isolated from *Escherichia coli*. Biofizika **34**, 814—818 (in Russian)

188 Uhríková et al.

Balgavý P., Dubničková M., Uhríková D., Yaradaikin S., Kiselev M., Gordeliy V. (1998): Bilayer thickness in unilamellar extruded egg yolk phosphatidylcholine liposomes: A small-angle neutron scattering study. Acta Physica Slovaca 48, 509—533

- Balgavý P., Dubničková M., Kučerka N., Kiselev M. A., Yaradaikin S. P., Uhríková D. (2001a): Bilayer thickness and lipid interface area in unilamellar extruded 1,2-diacylphosphatidylcholine liposomes: A small-angle neutron scattering study. Biochim. Biophys. Acta 1512, 40—52
- Balgavý P., Kučerka N., Gordeliy V. I., Cherezov V. (2001b): Evaluation of small-angle neutron scattering curves of unilamellar phosphatidylcholine liposomes using the multishell model of bilayer neutron scattering length density. Acta Physica Slovaca 51, 53—68
- Bukovský M., Mlynarčík D., Ondráčková V. (1996): Immunomodulatory activity of amphiphilic antimicrobials on mouse macrophages. Int. J. Immunopharmacol. 18, 423—426
- Devínsky F., Kopecká-Leitmanová A., Šeršeň F., Balgavý P. (1990): Cut-off effect in antimicrobial activity and in membrane perturbation efficiency of the homologous series of N,N-dimethylalkylamine oxides. J. Pharm. Pharmacol. 42, 790—794
- Dubničková M., Kiselev M., Kutuzov S., Devínsky F., Gordeliy V., Balgavý P. (1997): Effect of N-lauryl-N,N-dimethylamine N-oxide on dimyristoyl phosphatidylcholine bilayer thickness: A small-angle neutron scattering study. Gen. Physiol Biophys. 16, 175—188
- Ferenčík M., Lacko I., Devínsky F. (1990): Immunomodulatory activity of some amphiphilic compounds. Pharmazie 45, 695—696
- Gallová J. (1999): Interaction of the homologous series of N-alkyl-N,N-dimethylamine N-oxides with the dipalmitoylphosphatidylcholine model membrane. DSC study. Final Report of the Project 27s9, Action Slovakia-Austria, Bratislava-Graz
- Glover R. E., Smith R. R., Jones M. V., Jackson S. K., Rowlands C. C. (1999): An EPR investigation of surfactant action on bacterial membranes. FEMS Microbiol. Lett. 177, 57—62
- Hjelm R. P., Thiyagarajan P., Sivia D. S., Lindner P., Alkan H., Schwahn D. (1990): Small-angle neutron scattering from aqueous mixed colloid of lecirhin and bile salt. Prog. Colloid Polym. Sci. 81, 225—231
- Jahnová E., Ferenčík M., Nyulassy S., Devínsky F., Lacko I. (1993): Amphiphilic detergents inhibit production of IgG and IgM by human peripheral blood mononuclear cells. Immunol. Lett. 39, 71—75
- Kačáni L., Ferenčík M., Devínsky F., Dierich M.P. (1996): Immunomodulatory effect of some amphiphilic detergents on the human promyelocytic HL-60 cells. Folia Biol. (Praha) 42, 11—16
- Karlovská J., Degovics G., Lacko I., Lohner K., Balgavý P. (1999a): Effect of N-alkyl-N,N-dimethylamine-N-oxides on the thickness of phosphatidylcholine bilayer. In: Proc. XXII Days of Medical Biophysics, Institute of Medical Biophysics, Faculty of Medicine, P. J. Šafárik University, Košice, p. 50.
- Karlovská J., Lacko I., Balgavý P. (1999b): Effect of N-alkyl-N,N-dimethylamine-N-oxides on the activity of purified sarcoplasinic reticulum (Ca-Mg)ATPase. In: Structure and Stability of Proteins '99, Slovak Society for Biochemistry and Molecular Biology, Košice, p. PO10.
- Kragh-Hansen U., le Maire M., M011er J. V. (1998): The mechanism of detergent solubilization of liposomes and protein-containing membranes. Biophys. J. 75, 2932—2946
- MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R. (1991): Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim. Biophys. Acta 1061, 297—303

- Ostanevich Yu. M. (1988): Time-of-flight small-angle scattering spectrometers on pulsed neutron sources. Macromol. Chem. Macromol. Symp. 15, 91—103
- Šeršeň F., Gabunia G., Krejčíová E., Králová K. (1992): The relationship between lipophilicity of N-alkyl-N,N-dimethylamine oxides and their effects on the thylakoid membranes of chloroplasts. Phytosynthetica **26**, 202—212
- Šeršeň F., Leitmanová A., Devínsky F., Lacko I., Balgavý P. (1989): A spin label study of perturbation effects of N-(l-methyldodecyl)-N, N, N-trimethylammonium bromide and N-(l-methyldodecyl)-N,N-dimethylamine oxide on model membranes prepared from *Escherichia coli* isolated lipids. Gen. Physiol Biophys. 8, 133—156
- Uhríková D., Stanovská Z. (1990): The effect of N,N-dimethylalkylamine N-oxides on model membranes (NMR study). In: Proc. 5th Europhys. Summer School "Structure and Conformational Dynamis Of Biomacromolecules", High Tatras, p. 105
- Uhríková D., Balgavý P., Kučerka N., Islamov A., Gordeliy V., Kuklin A. (2000): Small-angle neutron scattering study of the n-decane effect on the bilayer thickness in extruded unilamellar dioleoylphosphatidylcholine liposomes. Biophys. Chem. 88, 165—170
- Vagov V. A., Kunchenko A. B., Ostanevich Yu. M., Salamatin I. M. (1983): Time-of-flight small-angle neutron scattering spectrometer at pulsed reactor IBR-2. JINR Communication P14-83-898

Final version accepted: February 13, 2001