Program Number: 1203-Pos

Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from large unilamellar vesicles

Norbert Kučerka¹, Yufeng Liu¹, Nanjun Chu¹, Horia I. Petrache², Stephanie Tristram-Nagle¹, John F. Nagle¹.

¹Carnegie Mellon University, Pittsburgh, PA, USA, ²National Institutes of Health, Bethesda, MD, USA.

Highly resolved structures of the fully hydrated fluid phases of dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC) are obtained at 30°C by X-ray scattering. Data from oriented bilayers at the D-1 station of the CHESS synchrotron provide relative form factors $F(q_z)$ for $0.2 < q_z < 0.8 \text{ Å}^{-1}$, data from large unilamellar vesicles provide relative form factors for $0.1 < q_z < 0.4 \text{ Å}^{-1}$, and volumetric data provide the value of F(0). We use hybrid models of lipid bilayers to place these form factors and the corresponding electron density profiles $\rho(z)$ on an absolute scale. Comparison of these electron density profiles with that of gel phase DMPC provides areas per lipid A, hydrophobic thickness $2D_C$, steric thickness $2D_B$ ' and number of water molecules per lipid n_w . Area results geometrically corrected for undulations are $61.0\pm0.5 \text{ Å}^2$ for DMPC and $63.7\pm0.5 \text{ Å}^2$ for DLPC.

Acknowledgments: This work was supported by NIH grant GM-44976.

Disclosures: N. Kučerka, None; Y. Liu, None; N. Chu, None; H.I. Petrache, None; S. Tristram-Nagle, None; J.F. Nagle, None.